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ABSTRACT
The family of natural evolution strategies (NES) offers a
principled approach to real-valued evolutionary optimiza-
tion by following the natural gradient of the expected fit-
ness. Like the well-known CMA-ES, the most competitive
algorithm in the field, NES comes with important invariance
properties. In this paper, we introduce a number of ele-
gant and efficient improvements of the basic NES algorithm.
First, we propose to parameterize the positive definite co-
variance matrix using the exponential map, which allows the
covariance matrix to be updated in a vector space. This new
technique makes the algorithm completely invariant under
linear transformations of the underlying search space, which
was previously achieved only in the limit of small step sizes.
Second, we compute all updates in the natural coordinate
system, such that the natural gradient coincides with the
vanilla gradient. This way we avoid the computation of the
inverse Fisher information matrix, which is the main compu-
tational bottleneck of the original NES algorithm. Our new
algorithm, exponential NES (xNES), is significantly simpler
than its predecessors. We show that the various update
rules in CMA-ES are closely related to the natural gradi-
ent updates of xNES. However, xNES is more principled
than CMA-ES, as all the update rules needed for covariance
matrix adaptation are derived from a single principle. We
empirically assess the performance of the new algorithm on
standard benchmark functions.

Categories and Subject Descriptors
[Evolution Strategies and Evolutionary Programming]

Keywords
evolution strategies, natural gradient, black box optimiza-
tion, unconstrained optimization

1. INTRODUCTION

Evolutionary algorithms aim to optimize a ‘fitness’ function
that is either unknown or too complex to be modeled di-
rectly. Their weak assumptions on the type of fitness func-
tion make them applicable to black box optimization prob-
lems. For example, evolution strategies (ESs) can typically
handle noise and do not require the fitness function to be
differentiable or even continuous. Being direct search meth-
ods, they rely on the fitness value only and do not require
gradients or higher derivatives. Such algorithms allow do-
main experts to search for good or near-optimal solutions
to numerous difficult real-world problems in areas ranging
from medicine and finance to control and robotics.

Natural Evolution Strategies (NES [13]), form a new class
of evolutionary algorithms that maintain and iteratively up-
date a multivariate Gaussian mutation distribution. Param-
eters are updated by estimating a natural evolution gradient,
i.e., the natural gradient on the parameters of the mutation
distribution, and following it towards better expected fit-
ness. A well-known advantage of natural gradient methods
over ‘vanilla’ gradient ascent is isotropic convergence on fit-
ness landscapes with highly correlated coordinates [1]. Al-
though relying exclusively on function value evaluations, the
resulting optimization behavior closely resembles second or-
der optimization techniques. This avoids drawbacks of reg-
ular gradients which are prone to slow or even premature
convergence [8].

Although more principled and theoretically sound than vanilla
gradient ascent methods, the original NES algorithm [13]
struggles with similar problems. On some benchmark func-
tions it converges slowly or even prematurely due to instabil-
ities of its updates, most probably resulting from unreliable
estimates of the natural gradient, particularly in medium to
high dimensional problems.

Recent work on the Exact NES (eNES) algorithm [12, 11]
has improved the robustness and reduced the computational
complexity of NES. This was achieved by analytically com-
puting the exact Fisher information matrix, which is needed
for the natural gradient, instead of estimating it from sam-
ples, and by introducing a number of novel techniques such
as importance mixing, fitness baselines [12], and a compu-
tationally efficient update of the inverse Fisher matrix [11].
However, these improvements come at the cost of relinquish-
ing true invariance w.r.t. linear transformations of the search
space.



Here we propose a number of novel techniques to resolve
the problems described above, building on both the origi-
nal NES algorithm and the improved eNES variant. In this
paper we introduce an exponential parametrization of the
search distribution that guarantees invariance, while at the
same time providing an elegant and efficient way of com-
puting the natural gradient without the need of the explicit
Fisher information matrix (or its costly inverse). The key
insight consists in performing a ‘natural’ change of coordi-
nate system at each step. Furthermore, we uncover a close
relationship between the resulting updates of the search dis-
tribution and those of the well-known CMA-ES [4, 6] al-
gorithm, providing a retroactive theoretical justification for
some of its heuristics.

The resulting algorithm, exponential NES (xNES), is sim-
pler and significantly more stable, even with greatly reduced
population sizes. On standard unimodal benchmarks, we
show that xNES is consistently faster than its predecessors.

The remainder of this paper is organized as follows: We in-
troduce the basic NES scheme in section 2 and its extension
eNES in section 3. Then we propose two novel techniques
that address their shortcomings in section 4 and summa-
rize the resulting xNES algorithm in section 5. Section 6
is dedicated to our experimental evaluation. We finish with
conclusions in section 7.

2. NATURAL EVOLUTION STRATEGIES
The family of natural evolution strategies (NES) [13] ex-
hibits the typical characteristics of evolution strategies (ESs).
It maintains a population of vector-valued candidate solu-
tions, and samples new offspring and adapts its search dis-
tribution generation-wise. The essential concepts of NES
are briefly revisited in the following.

Gradient of Expected Fitness. The core idea of NES is
its strategy adaptation mechanism: NES follows a sampled
natural gradient of expected fitness in order to update (the
parameters of) the search distribution. In its standard form,
NES uses Gaussian distributions with fully adaptive covari-
ance matrix, but it may in principle be used with a different
family of search distributions.

We collect the parameters of the Gaussian, the mean µ ∈ R
d

and the covariance matrix C ∈ R
d×d, in the variable θ =

(µ, C). However, to sample efficiently from this distribution
we need a square root of the covariance matrix (a matrix
A ∈ R

d×d fulfilling AAT = C). Then x = µ+Az transforms
a standard normal vector z ∼ N (0, I) into a sample x ∼
N (µ, C). Let

p(x | θ) =
1

(
√

2π)d det(A)
· exp

„

−1

2

‚

‚

‚

A−1 · (x − µ)
‚

‚

‚

2
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denote the density of the normal search distribution N (µ, C).
Then,

J(θ) = E[f(x) | θ] =

Z

f(x) p(x | θ) dx (1)

is the expected fitness under the search distribution given

by θ. The so-called ‘log-likelihood trick’ enables us to write

∇θJ(θ) =∇θ

Z

f(x) p(x | θ) dx

=

Z

f(x) ∇θp(x | θ) dx

=

Z

f(x) ∇θp(x | θ) p(x | θ)
p(x | θ) dx

=

Z

h

f(x) ∇θ log(p(x | θ))
i

p(x | θ) dx .

From this form we obtain the Monte Carlo estimate

∇θJ(θ) ≈ 1

n

n
X

i=1

f(xi) ∇θ log(p(x | θ))

of the expected fitness gradient. For the Gaussian search
distribution N (µ, C), the term ∇θ log(p(x | θ)) can be com-
puted efficiently, see e.g. [12].

Natural Gradient. Instead of using the stochastic gradi-
ent directly for updates, NES follows the natural gradi-
ent [1]. In a nutshell, the natural gradient amounts to
G = F−1∇θJ(θ), where F denotes the Fisher information
matrix of the parametric family of search distributions. Note
that for d-dimensional search space the parameter vector
θ = (µ, C) has d + d(d + 1)/2 ∈ O(d2) components, such
that the Fisher matrix F consists of O(d4) entries. In prin-
ciple, the Fisher matrix can be estimated from samples [13].
Computing and inverting1 this matrix in a näıve implemen-
tation takes O(d6) operations, which is intractable even for
moderate dimensions.

Natural gradient ascent has well-known advantages over vanilla
gradient ascent. Most prominently it results in isotropic con-
vergence on ill-shaped fitness landscapes because the natu-
ral gradient is invariant under linear transformations of the
search space.

Fitness Shaping. NES introduces rank-based fitness shap-
ing in order to render the algorithm invariant under mono-
tonically growing (i.e., rank preserving) transformations of
the fitness function. For this purpose, the fitness of the pop-
ulation is shaped into a set of utility values u1 ≥ · · · ≥ un.
Let xi denote the ith best individual (the ith individual in
the population, sorted by fitness, such that x1 is the best and
xn the worst individual). Replacing fitness with utility, the
gradient estimate becomes, with slight misuse of notation,

∇θ
bJ(θ) =

n
X

i=1

ui ∇θ log(p(xi | θ)) . (2)

Selection. In NES, parent and offspring population are both
of the same size n. In each generation the whole popu-
lation is replaced with the newly sampled offspring popula-
tion, such that there is essentially no selection mechanism at

1Care has to be taken because the Fisher matrix estimate
may not be (numerically) invertible even if the exact Fisher
matrix is.



work. Instead of actually selecting individuals, NES employs
the smoother concept of assigning utility values, which are
then used to adapt the search distribution. Thus, the state
of the NES algorithm is essentially encoded in the search
distribution, and not in the population.

Invariance Properties. Invariance against a large set of
transformations of the fitness function and/or the underly-
ing search space is a desirable property for evolution strate-
gies. Just like CMA-ES [4, 6], NES enjoys a number of in-
variance properties. Rank-based fitness shaping makes the
algorithm invariant under monotonic transformations of the
fitness function, and the natural gradient is invariant un-
der linear transformations of the search space. Thus, when
transforming both the search space and the initial search dis-
tribution with the same linear transformation, the natural
gradient is transformed accordingly.

3. BOTTLENECKS AND FIXES: EFFICIENT

EXACT NES
In this section we briefly outline the current state-of-the-art
Exact NES (eNES) algorithm as presented in [12]. Its effi-
ciency was improved in [11]. We point out the most promi-
nent performance bottlenecks of the basic NES scheme and
discuss the various strategies introduced in eNES to over-
come these difficulties.

Exact Fisher Matrix Computation. In the original NES
algorithm the Fisher information matrix is estimated from
the samples in the population. This process, and even worse
the inversion of the Fisher matrix, add high variance to the
gradient steps. Restricting the NES algorithm to Gaussian
search distributions with adaptive covariance matrix allows
for the exact analytical computation of the Fisher matrix.
This procedure results in the name exact NES (eNES). The
complexity per generation of the eNES algorithm has been
reduced from O(d6) to O(d3) operations by representing the
covariance matrix C by its (lower triangular) Cholesky de-
composition. Then the Fisher matrix turns out to have a
block-diagonal structure which can be exploited for itera-
tively computing F−1.

Fitness Baselines. In order to reduce the variance of the
gradient (2), NES uses a fitness baseline. The baseline is
further improved in eNES, taking into account the block
structure of the Fisher information matrix. Experiments in
[12] confirm that the application of fitness baselines signifi-
cantly reduces premature convergence.

Importance Mixing. Whenever gradient steps are reason-
ably small, the search distributions in subsequent genera-
tions will overlap to some extent. In this situation eNES
re-uses samples from the old distribution, i.e., individuals
from the current population, with a technique called impor-
tance mixing. This technique makes sure that the popula-
tion is still sampled from the correct distribution, although
individuals from the previous population are re-used with a
positive probability depending on the quotient of the densi-

ties of old and new search distribution. This has the effect
that subsequent populations are no more independent. It
has been shown empirically [12] that importance mixing can
save a large fraction of the otherwise n fitness evaluations
per generation. On the other hand it requires larger pop-
ulation sizes n, which in part compensates this effect. An
interesting side effect seems to be that importance mixing
renders eNES less sensitive to parameter settings.

Selection. Importance mixing is an interesting technique
in the light of evolutionary computation. While in the ba-
sic version of NES a completely new population is sampled
in each generation, importance mixing allows individuals in
eNES to survive in principle indefinitely. Here, the selection
pressure is not directly coupled to fitness or utility, but in-
stead to the probability of being sampled from the current
search distribution.

Invariance. As the natural gradient is invariant under lin-
ear transformations of the search space, the resulting algo-
rithm should inherit this property. However, this is not com-
pletely true for eNES, as the corresponding (finite) gradient
step is not invariant. This is because the Cholesky decompo-
sition of the covariance matrix C, the resulting block struc-
ture of the Fisher matrix, and the corresponding block-wise
fitness baselines depend on the coordinate system. Thus,
invariance is achieved only in the limit of small step sizes.

4. EXPONENTIAL NES
The eNES algorithm addresses a large part of the issues of
the original NES algorithm. However, its performance is not
quite satisfactory. Compared to CMA-ES, eNES is still rel-
atively slow (although it managed to close a large fraction of
the gap), and it systematically shows premature convergence
on some standard benchmark problems such as the Rosen-
brock function in high dimensions. Furthermore, invariance
is lost to some extent through the otherwise elegant trick to
parameterize the covariance matrix by its Cholesky decom-
position. The novel approach presented in the next section
constitutes alternative solutions to the speed and stability
issues of NES, and also manages to recover full invariance.

4.1 Exponential Parameterization
Gradient steps on the covariance matrix C result in a num-
ber of technical problems. When updating C directly with
the gradient step δC, we have to ensure that C + δC still
is a valid positive definite covariance matrix. This is not
guaranteed a priori, because the (natural) gradient δC may
be any symmetric matrix. If we instead update a factor A
of C, it is at least ensured that AAT is symmetric and pos-
itive semi-definite. But when shrinking an eigenvalue of A
it may happen that the gradient step swaps the sign of the
eigenvalue, possibly resulting in undesired oscillations.

An elegant way to fix these problems is to represent the
covariance matrix using the exponential map for symmetric
matrices (see e.g. [3] for a related approach). Let

Sd :=
n

M ∈ R
d×d

˛

˛

˛

MT = M
o



and

Pd :=
n

M ∈ Sd

˛

˛

˛

vT Mv > 0 for all v ∈ R
d \ {0}

o

denote the vector space of symmetric and the (cone) man-
ifold of symmetric positive definite matrices, respectively.
Then the exponential map

exp : Sd → Pd , M 7→
∞

X

n=0

Mn

n!
(3)

is a diffeomorphism: The map is bijective, and both exp as
well as its inverse map log : Pd → Sd are smooth. The map-
ping can be computed in cubic time, for example by decom-
posing the matrix M = UDUT into orthogonal U and diago-
nal D, taking the exponential of D (which amounts to taking
the element-wise exponentials of the diagonal entries), and
composing everything back2 as exp(M) = U exp(D)UT .

Thus, we can represent the covariance matrix C ∈ Pd as
exp(ξ) with ξ ∈ Sd. The resulting gradient update for ξ
has two important properties: First, because Sd is a vec-
tor space, any update automatically corresponds to a valid
covariance matrix.3 Second, the update of ξ makes the gra-
dient step invariant w.r.t. linear transformations. This fol-
lows from an information geometric perspective, viewing Pd

as the Riemannian parameter manifold equipped with the
Fisher information metric. The invariance property is a di-
rect consequence of the Cartan-Hadamand theorem [2].

However, the exponential parameterization considerably com-
plicates the computation of the Fisher information matrix F ,
which now involves partial derivatives of the matrix expo-
nential (3). This can be done in cubic time per partial
derivative according to [7], resulting in an unacceptable com-
plexity of O(d7) for the computation of the Fisher matrix.

4.2 Natural Coordinates
The second novel contribution of the paper is a technique
that avoids the computation of the Fisher matrix altogether.
Instead of using the “global” coordinates C = exp(ξ) for the
covariance matrix, we linearly transform the coordinate sys-
tem in each iteration to a coordinate system in which the
current search distribution is the standard normal distri-
bution with zero mean and unit covariance. Let the cur-
rent search distribution be given by (µ, A) ∈ R

d × Pd with
AAT = C. We use the tangent space T(µ,A)(R

d × Pd) of

the parameter manifold R
d ×Pd, which is isomorphic to the

vector space R
d × Sd, to represent the updated search dis-

tribution as

(δ, M) 7→ (µnew, Anew) =

„

µ + Aδ, A exp

„

1

2
M

««

. (4)

This coordinate system is natural in the sense that the Fisher
matrix w.r.t. an orthonormal basis of (δ, M) is the identity
matrix. The current search distribution N (µ, AAT ) is en-
coded as (δ, M) = (0, 0).

2The same computation works for the logarithm, and thus
also for powers Pd → Pd, M 7→ Mc = exp(c · log(M)) for
all fixed c ∈ R, for example for the (unique) square root
(c = 1/2).
3The tangent bundle TPd of the manifold Pd is isomorphic
to Pd × Sd and globally trivial. Thus, arbitrarily large gra-
dient steps are meaningful in this representation.

Thus, for the variables (δ, M) in equation (4) the vanilla
gradient and the natural gradient coincide. Consequently
the natural gradient can be computed in O(d3) operations.
The trick to compute the update in the natural coordinate
system is an alternative to the exponential parameterization
for making the algorithm invariant under linear transforma-
tions of the search space, which is achieved in a very direct
and constructive way. In the new coordinate system the
log-density becomes

log (p(x | δ, M)) = − d

2
log(2π) − tr(A)

− 1

2

‚

‚

‚

exp

„

−1

2
M

«

A−1 · (x − µ)
‚

‚

‚

2

.

4.3 Updates
The resulting update takes a surprisingly simple form com-
pared to earlier versions of the NES algorithm. Consider a
population of offspring xi = µ + A · zi with zi ∼ N (0, I)
for i ∈ {1, . . . , n}. Let ui be the utility associated with the
individual of rank i, then the gradient becomes

Gδ =∇
δ

bJ(0, 0)

=
n

X

i=1

ui · ∇δ
|
δ=0

log(p(xi |M = 0, δ))

=

n
X

i=1

ui · ∇δ
|
δ=0

»

−1

2

‚

‚

‚

A−1 · (xi − (µ + δ))
‚

‚

‚

2
–

=
n

X

i=1

ui · A−1 · (xi − µ)

=

n
X

i=1

ui · zi (5)

and

GM =∇
M

bJ(0, 0)

=
n

X

i=1

ui · ∇M
|
M=0

log(p(xi | δ = 0, M))

=
n

X

i=1

ui · ∇M
|
M=0

"

− tr(A)

− 1

2

‚

‚

‚

exp

„

−1

2
M

«

A−1(xi − µ)
‚

‚

‚

2
#

=
n

X

i=1

ui ·
"

− I − [A−1(xi − µ)] ·
„

−1

2
I

«

· [A−1(xi − µ)]T
#

=
1

2

n
X

i=1

ui · (ziz
T
i − I) . (6)

As an update, this step can of course be modulated by a
learning rate.

We decompose the parameter vector space (µ, M) ∈ R
d×Sd



into the product

R
d × Sd = R

d

|{z}

(µ)

× S‖
d

|{z}

(σ)

× S⊥
d

|{z}

(B)

, (7)

of orthogonal subspaces. Here, the one-dimensional space

S‖
d = {λ · I |λ ∈ R} is spanned by the unit matrix I and

S⊥
d = {M ∈ Sd | tr(M) = 0} denotes its orthogonal com-

plement in Sd. This decomposition is canonical in the sense
that no other decomposition is invariant under linear trans-
formations of the search space. The different components
have roles with clear interpretations: The (µ)-component Gδ

describes the update of the center of the search distribution,
the (σ)-component with value Gσ · I for Gσ = tr(GM )/d
has the role of a step size update, which becomes clear
from the identity det(exp(M)) = exp(tr(M)), and the (B)-
component GB = GM − Gσ describes the update of the
transformation matrix, normalized to unit determinant.

On these subspaces we introduce independent learning rates
ηµ, ησ, and ηB , respectively. For simplicity we also split the
transformation matrix A = σ · B into the step size σ ∈ R

+

and the normalized transformation matrix B with det(B) =
1. Then the resulting update is

µnew = µ + ηµ · Gδ = µ + ηµ ·
n

X

i=1

ui · zi (8)

σnew = σ · exp
“ησ

2
· Gσ

”

(9)

= σ · exp

 

ησ

2
· tr

 

n
X

i=1

ui · (ziz
T
i − I)

!,

d

!

Bnew = B · exp
“ηB

2
· GB

”

(10)

= B · exp

„

ηB

2
·

„

∆ − tr(∆)

d
· I

««

,

where ∆ =
Pn

i=1 ui · (ziz
T
i − I). In case of ησ = ηB , in this

case referred to as ηA, the updates (9) and (10) simplify to

Anew = A · exp
“ηA

2
· GM

”

(11)

= A · exp

 

ηA

2
·

n
X

i=1

ui · (ziz
T
i − I)

!

.

4.4 Connection to CMA-ES
The family of NES algorithms is related to CMA-ES [4] in
the sense that both are evolution strategies using Gaussian
search distributions with fully adaptive covariance matrices.
They also share the same invariance properties. It turns
out that the new xNES algorithm has even tighter links to
CMA-ES.

The update (8) is very similar to the update of the center of
the search distribution in CMA-ES [4]. The utility function
exactly takes the role of the weights in CMA-ES, which as-
sumes a fixed learning rate of one. From equation (11) we
deduce the update rule

Cnew =Anew · (Anew)T

=A · exp

 

ηC ·
n

X

i=1

ui

“

ziz
T
i − I

”

!

· AT

for the covariance matrix, with learning rate ηC = ηA. The
exponential term can be approximated by its first order Tay-
lor expansion

exp

 

ηC ·
n

X

i=1

ui

“

ziz
T
i − I

”

!

≈ I + ηC ·
n

X

i=1

ui

“

ziz
T
i − I

”

,

so the first order approximate update yields

C′
new =A ·

 

I + ηC ·
n

X

i=1

ui

“

ziz
T
i − I

”

!

· AT

= (1 − U · ηC) · AAT + ηC ·
n

X

i=1

ui (Azi) (Azi)
T

= (1 − U · ηC) · C + ηC ·
n

X

i=1

ui (xi − µ) (xi − µ)T

with U =
Pn

i=1 ui. We obtain this update when using only
the natural coordinate system technique without the expo-
nential parameterization. Up to the evolution path, this
update equation coincides with the update of the covariance
matrix in CMA-ES. We argue that just like for the global
step size σ in CMA-ES, the multiplicative update of the co-
variance matrix C (or the transformation matrix A) as done
in xNES is more natural than the above additive covariance
matrix update.

The decomposition (7) exactly corresponds to the represen-
tation of the search distribution in CMA-ES, where the co-
variance matrix is augmented with a global step size pa-
rameter. One of the most valuable contributions of natural
evolution strategies is to set us into the position to derive
the updates of the center µ, the step size σ, and the normal-
ized transformation matrix B, all from the same principle of
natural gradient ascent.

5. THE ALGORITHM
In this section we combine the basic components of NES and
the new concepts introduced in the previous section to form
the exponential NES algorithm (xNES).

The algorithm state is specified by the search distribution,
such that the initial search distribution should be input to
the algorithm, together with problem dimension and fitness
function. In the generation loop we sample n offspring, de-
termine their ranks (which is done by sorting in the actual
implementation), and compute the gradient (Gδ, GM ) in the
natural coordinate system according to formulas (5) and (6).
An application of the update formulas (8), (9), and (10) for
the strategy parameters µ, σ, and B completes the loop.
Pseudo-code for the xNES algorithm is presented in Algo-
rithm 1.

The tunable parameters of xNES are comprised of the pop-
ulation size n, the learning rates (ηµ, ησ, and ηB) and the
utility function u.

It is highly desirable to have good default settings that scale
with the problem dimension and lead to robust performance
on a broad class of benchmark functions. Table 1 provides
such default values as functions of the problem dimension d.
We borrowed several of the settings from CMA-ES, which
seems natural due to the apparent similarity discussed in



Algorithm 1: The xNES Algorithm

Input: d ∈ N, f : R
d → R, µ ∈ R

d, A ∈ R
d×d

σ ← d
p

| det(A)|
B ← A/σ
while stopping condition not met do

for i ∈ {1, . . . , n} do
zi ← N (0, I)
xi ← µ + σB · zi

end
sort {(zi, xi)} with respect to f(xi)
Gδ ← Pn

i=1 ui · zi

GM ← Pn

i=1 ui · (ziz
T
i − I)

Gσ ← tr(GM )/d
GB ← GM − Gσ · I
µ ← µ + ηµ · σB · Gδ

σ ← σ · exp(ησ/2 · Gσ)
B ← B · exp(ηB/2 · GB)

end

parameter default value

n 4 + ⌊3 log(d)⌋
ηµ 1

ησ = ηB
3
5
· (3+log(d))

d
√

d

ui
max(0,log( n

2
+1)−log(i))

P

n
j=1

max(0,log( n
2

+1)−log(j))
− 1

n

Table 1: Default parameter values for xNES as a
function of problem dimension d.

section 4.4. Both the population size n and the learning
rate ηµ are the same as for CMA-ES, even if this learn-
ing rate never explicitly appears in CMA-ES. For the utility
function we copied the weighting scheme of CMA-ES, but
we normalized the values such that they sum to zero, which
is the simplest form of implementing a fitness baseline. In [5]
a similar approach has been proposed for CMA-ES. The re-
maining parameters have been determined via an empirical
investigation, aiming for robust performance. They are used
throughout this paper. A Python implementation of xNES
is available within the open-source machine learning library
PyBrain [9].

The alternative to using dimension-dependent default pa-
rameters is to use importance mixing (as in [12]). In that
case, the exact values of parameters are less important, as
importance mixing implicitly adapts them to the situation
(by reusing more or less old points). We found this to be
robust for xNES as well, but it lead to slightly worse perfor-
mance.

6. EXPERIMENTS
In this section we present our experimental evaluation of the
new xNES algorithm. It is benchmarked against CMA-ES
on a set of standard benchmark functions in order to assess
its performance with respect to state-of-the-art.

6.1 Experimental Setup
We empirically validate our algorithm on nine unimodal
functions out of the set of standard benchmark functions

from [10] and [4], that are typically used in the literature, for
comparison purposes, and for competitions. We randomly
choose the center of the initial search distribution at average
distance one from the optimum and start with a radial search
distribution of unit variance. In order to prevent potentially
biased results, we follow [10] and consistently transform (by
a combined rotation and translation) the functions’ inputs,
making the variables non-separable and avoiding trivial op-
tima (e.g. at the origin). This immediately renders many
other methods virtually useless, since they cannot cope with
correlated mutation directions. xNES, however, is perfectly
invariant under translation and rotation with initially ra-
dial search distribution, and even invariant under arbitrary
linear transformations if we transform the search distribu-
tion accordingly. In addition, the rank-based fitness shaping
makes it invariant under order-preserving transformations of
the fitness function.

We ran xNES and CMA-ES on this set of benchmark func-
tions with dimensions between 2 and 64 and a target fitness
of −10−10 (103 for the unbounded functions SharpR and
ParabR)4. A run is counted as a success if it reaches the
target fitness within 107 total fitness evaluations. A run
is terminated and counted as a failure whenever numerical
instability is detected.

6.2 Results and Discussion
Figure 1 provides the full results on the set of benchmark
functions over a broad range of dimensions up to 64. It
demonstrates that xNES scales approximately quadratically
on the dimensionality of the problem. In particular, xNES is
able to solve the Rosenbrock benchmark in high dimensions
consistently, which is a significant improvement over its pre-
decessors. It is also worth noting that the scaling factor of
xNES is almost the same over all functions. However, xNES
does appear to be more stable, especially in the Sharp ridge
function.

Figure 2 illustrates the behavior of CMA-ES, eNES and
xNES on the Rosenbrock benchmark, in dimension 8. The
performance of xNES is drastically improved compared to
eNES. In addition, xNES exhibits a similar behavior to CMA-
ES, with the exception of the late phase (descent into the
approximately quadratic optimum) where the curve is not as
steep. Still, all algorithms under consideration exhibit a log-
linear convergence in that late phase, due to their intrinsic
scale-invariance.

Another interesting difference between xNES and CMA-ES
can be observed for the Sharp ridge function in eight or more
dimensions. CMA-ES is prone to premature convergence
because it adapts its search distribution too quickly to the
ridge, which does not allow it to find a point in the other
valley.

We identify two key differences between xNES and CMA-
ES. CMA-ES descends faster into approximately quadratic
local optima, corresponding to the steeper curve in the late
phase in Figure 2. On the other hand, xNES better resists
premature convergence.

4Note that the minus sign is due to fitness maximization.
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Figure 1: Log-log plot of the median number of fitness evaluations (over the successful trials out of 100)
required to reach the target fitness value of −10−10 (103 for the unbounded functions ParabR and SharpR) for
9 different benchmark functions on dimensions 2 to 64. Dashed connections denote cases where the algorithm
prematurely converged in at least 10% of the runs. Setups for which no single run converged are not shown
at all. We observe that xNES – unlike CMA-ES – scales identically with dimension (same steepness) for all
nine benchmarks. It does not suffer from premature convergence.



Figure 2: Average number of evaluations required to
reach a fitness of −10−10 on the Rosenbrock bench-
mark in dimension 8.

7. CONCLUSION
We introduced the xNES algorithm, a new member of the
family of natural evolution strategies. Compared to its pre-
decessors, the new algorithm is more elegant and enjoys bet-
ter theoretical invariance properties. In our experiments, it
shows convincing performance and robustness.

In contrast to the earlier eNES algorithm, xNES is truly
invariant w.r.t. linear transformations of the coordinate sys-
tem. This is an important property for evolution strategies
in general whenever a problem specific coordinate system
is not known. Furthermore, xNES completely avoids the
costly computation and inversion of the Fisher information
matrix by executing all updates in a local ‘natural’ coordi-
nate system, in which the natural gradient coincides with
the standard gradient.

The resulting update equations turn out to closely resemble
some of the strategy adaptation rules found in CMA-ES.
However, we argue that the multiplicative update rule for
the covariance matrix in xNES more natural than the addi-
tive mixing in CMA-ES. This result indicates a much tighter
link between NES and CMA-ES than expected. In partic-
ular, we deduced update rules very similar to the diverse
rules found in CMA-ES from the single principle of natural
gradient ascent. On the one hand, this shows that xNES
follows a more principled approach than CMA-ES. On the
other hand, we consider this finding an important contribu-
tion to the theoretical understanding of the mechanism of
covariance matrix adaptation in general.

Empirically, xNES performs on par with CMA-ES on many
standard benchmark functions. The new algorithm is slower
when descending into quadratic optima, while it outper-
forms CMA-ES in terms of stability, successfully avoiding
premature convergence, e.g. in the ‘sharp ridge’ benchmark.

The xNES algorithm is a big step forward. Still, it leaves a
few problems open for future research. The most pressing
one is the choice of learning rates, which is not yet satisfac-
tory. One possible strategy for coming up with more con-
vincing rules is to improve our theoretical understanding of
xNES. An orthogonal approach is to apply self-adaptation

mechanisms to control (some of) the learning rates. Such
an approach may even achieve the best of two worlds in a
single algorithm, enabling us to combine optimal learning
rates for fast descent into local optima (where the task is to
keep the shape of the search distribution stable) with differ-
ent settings for quick adaptation of the search distribution
whenever necessary.
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